Further progress in injection molding.
The age of "A" begins.

Lineage of Sumitomo all-electric injection molding machines "A"

Sumitomo's all-electric injection molding machines have undergone a synergistic evolution in hardware and software technologies. The SE-EV series debuted as the leader in the age of innovation and has evolved to the next stage, the SEEV-A series, which provides overwhelming advances in precision molding.

Increased potential of the "A" line

1. Simple & Quick
 Speedy start up to mass production

2. Precise & Stable
 Precise, stable and high-quality production

3. Smart & Energy-saving
 Minimizing management and environmental loads
Simple and Quick

Speedy start up to mass production

The SL Screw is effective in preventing black spots/burning and good gas release. See page [x] for details. The SL Screw is optional.

Even though the mold clamp force rises at the peak of the injection pressure, the actual clamp force goes down to setting value during holding pressure process (See waveform A). It can be judged that the set value of the mold clamp force is sufficient.

Purging conditions A to C are changed automatically. MCM reduces the clamping forces remarkably. See page [x] for details.

Minimum mold clamp force at mold surfaces contact completely is detected automatically. The necessary mold clamp force can be found from the waveform based on that value.

The SEEV-A has an automatic purging mode for resin color change. It saves valuable time and resin. Purging function for resin replacement

Finding minimum mold clamping force quickly

The minimum mold clamp force at mold surfaces contact completely is detected automatically. The necessary mold clamp force can be found from the waveform based on that value.

MCM reduces the clamping forces remarkably. See page [x] for details.

Speddy color and mold change

The SEEV-A has an automatic purging mode for resin color change. It saves valuable time and resin. Purging function for resin replacement

FFC is a part of the Zero-molding functions. See page [x] for details.

Waveform items can be logged to improve the accuracy of quality control judgments.

Even though the mold clamp force rises at the peak of injection pressure, the actual clamp force goes down to setting value during holding pressure process (See waveform A). It can be judged that the set value of the mold clamp force is sufficient.
Precise and Stable
Precise, stable and high-quality production

High-precision and quick-response screw control
Direct drive system

Originally developed low inertia servomotor is controlled by an up-to-date control system ISCII (Intelligent Servo Controller II) for high-precision and quick-response screw control. They provide most precise and stable plasticizing, filling, and clamping pressure.

More higher cycle molding
Damping acceleration/deceleration control S-MOVE

SEEV-A can open and close the mold more quickly with low vibration by generating smooth speed patterns in acceleration and deceleration.

Development to the third generation
The first in the industry direct drive machine SE-S released in 1997 established the reputation of Sumitomo’s all electric technology. Development of servomotors exclusive for injection molding machines has advanced to the third generation, and motor performance has been improved remarkably.

Revision of mold opening/closing time

- Progress of servomotor development -

<table>
<thead>
<tr>
<th>Generation</th>
<th>Models</th>
<th>Max. injection speed (mm/s)</th>
<th>Rise time (ms)</th>
<th>Acceleration (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SE-S</td>
<td>300</td>
<td>70</td>
<td>0.233</td>
</tr>
<tr>
<td>2</td>
<td>SE-D</td>
<td>300</td>
<td>20</td>
<td>0.816</td>
</tr>
<tr>
<td>3</td>
<td>SE-EV</td>
<td>350</td>
<td>20</td>
<td>1.429</td>
</tr>
<tr>
<td>4</td>
<td>SEEV-A</td>
<td>350</td>
<td>20</td>
<td>1.429</td>
</tr>
</tbody>
</table>

The value of each model is based on the C360 injection unit.

- Comparison of mold opening/closing time -

Conventional 180 tf machine

Angular pin insertion

SEEV-A: Enables high-speed setting close to the angular pin insertion position

Example of mold with angular pin

Conventional model: Stabilization speed setting for vibration prevention

Example of mold without angular pin

- Cycle comparison example -

Conventional machine

Mold close

 molds up and takes out

Cooling

Clamp force sensor

Actual clamp force detection

Adjustment commands

Controller

Input

Encoder

Mold thickness

Position detection

Controller

Mold thickness adjusting gear

Mold thickness adjusting servomotor

Clamp force sensor

Actual clamp force detection

Adjustment commands

Controller

Input

Encoder

Mold thickness

Position detection

Controller

Mold thickness adjusting gear

Mold thickness adjusting servomotor

Clamp force sensor

Actual clamp force detection

Adjustment commands

Controller

Input

Encoder

Mold thickness

Position detection

Controller

Mold thickness adjusting gear

Mold thickness adjusting servomotor

Clamp force sensor

Actual clamp force detection

Adjustment commands

Controller

Input

Encoder

Mold thickness

Position detection

Controller

Mold thickness adjusting gear

Mold thickness adjusting servomotor

Clamp force sensor

Actual clamp force detection

Adjustment commands

Controller

Input

Encoder

Mold thickness

Position detection

Controller

Mold thickness adjusting gear

Mold thickness adjusting servomotor

Keeps linearity and parallelism of molds and prevents damages to the molds

Platen support and bush-less tie bar

SEEV-A provides smooth mold open/close at heavy mold with accurate platen parallelism. This function demonstrates the mold accuracy 100% and prevents mold damage, such as pin stuck, etc.

Superior surface pressure distribution offers good gas vent and reduces the mold clamp force

Center Press Platen

Center press platen that equalizes the surface pressure distribution is employed as the standard feature. New structure design reduces surface pressure unevenness at the center further.

Keeping mold clamp force constant in mass production

Mold clamp force feedback control

The mold clamp force tends to increase due to thermal expansion of molds in mass production. SEEV-A provides constant mold clamp force by correcting the mold thickness based on the actual mold thickness.

- Actual clamp force transition in mass production -

Actual clamp force transition in mass production with clamp force feedback control

- Comparison of surface pressure distribution with pressure-sensitive paper -

Remarkable improvement in the center

- Comparison of mold opening/closing time -

Conventional model:

Multi-step speed setting for vibration prevention

15% reduction totally

Angular pin insertion

S-MOVE:

Enables high-speed setting close to the angular pin insertion position

-5% 2.1s

2.2s

1.3s

1.9s

1500

1450

1350

1250

1150

1050

1500

1400

1300

1200

1100

1000

Number of shots

0

500

100

150

200

250

300

350

400

450

500

Without clamp force feedback control

With clamp force feedback control
Thoroughgoing energy saving performances

All electric machines feature outstanding energy saving performances overwhelming the hydraulic machines. Reduction of mold clamp force by Zero-molding and improvement of the mechanical efficiency by the low-friction mechanisms, such as the linear guide platen support, reduce power consumption further in comparison with the conventional machines.

Reduces power consumption remarkably

Power consumption reduction at holding pressure process

If the initial large holding pressure need not be maintained, the motor load can be reduced by reducing holding pressure gradually. The reduction rate (slope) is set by selecting modes.

Power-saving type hydraulic unit

ie Pump Unit

The ie Pump Unit reduces power consumption much more than conventional general core-tractor-driven hydraulic units.

Mold protection function

SEEV-A has more accuracy mold protection functions than conventional machine. SEEV-A prevents mold damage, such as part remaining at parting line by sensitive monitoring.

Protecting molds against accidents

- Operation verification with paper cups -

Power-saving effects vary with the molding conditions.

Prevents product and environment pollution with tie bar grease

Bush-less tie bar and tie bar plating

SEEV-A prevents cosmetic defect by grease scattering, since mold area is clean by grease free tie bar. Also you have comfortable work environments.

“Comfortable work without producing defects” is impossible in such environments.
Reducing defects, loss, and faults to zero whenever possible

Zero-molding

Zero-molding is an integrated application that reduces defects, loss, and faults to zero whenever possible. The product offers three elemental technologies of MCM related to clamping, FFC related to filling, and SPS related to operations.

MCM

Minimum Clamping Molding

Optimization of improved clamping accuracy and uniform surface pressure distribution yields the required minimum clamp forces with well-balanced surface pressure.

- **Mold touching**
 - Full surface contact
 - Mold deformation and vents closed

- **Clamp force**
 - Clamp force is set in this range

- **Vent deformation of paper**
 - Surface pressure

- **Excessive clamp force**
 - Appropriate clamp force in MCM molding

FFC

Flow Front Control

Low-pressure and smooth filling improves cavity balance by good gas release.

- **Screw control**
 - Before and after V-P switch
 - Low-pressure, smooth, and complete filling

SPS

Simple Process Setting

Error-free and simple setting reduces operation time.

- **Production engineers and general operators**
 - Can make full use of the advanced performance.

Dosing system based on a new theory that overturns the accepted ideas of screws

The SL Screw improves and eliminates the following defective phenomena.

- Black spots, burning, discoloration
- Mold deposit by gas and water contents
- Screw, screw tip and barrel wearing
- Unstable plasticizing

It is especially effective for high temperature engineering plastic, super engineering plastic, and resins containing flame retardant, GF, etc.

Variable screw assemblies that meet all needs

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Nitride</th>
<th>Plating</th>
<th>Wear resistant</th>
<th>Wear resistant</th>
<th>Corrosion resistant</th>
<th>Corrosion resistant</th>
<th>High temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
</tr>
<tr>
<td>Screw type</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
</tr>
<tr>
<td>Screw tip</td>
<td>Rotation type</td>
</tr>
<tr>
<td>Screw molding</td>
<td>Normal molding</td>
<td>FFC molding</td>
<td>Normal molding</td>
<td>Normal molding</td>
<td>Normal molding</td>
<td>Normal molding</td>
<td>Normal molding</td>
</tr>
<tr>
<td>Type</td>
<td>SD Screw</td>
<td>SM Screw</td>
<td>SD Screw</td>
<td>SM Screw</td>
<td>SD Screw</td>
<td>SM Screw</td>
<td>SD Screw</td>
</tr>
<tr>
<td>Features</td>
<td>Wear resistance</td>
<td>Corrosion resistance</td>
<td>Wear resistance</td>
<td>Corrosion resistance</td>
<td>Wear resistance</td>
<td>Corrosion resistance</td>
<td>Wear resistance</td>
</tr>
<tr>
<td>Resin that is not</td>
<td>Wear resistance</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
</tr>
<tr>
<td>Resin that is not</td>
<td>10 - 30%</td>
</tr>
<tr>
<td>Reduced operation time</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
</tbody>
</table>

SL Screw provides stable dosing process by preventing

- Black spot and good gas/water contents release.

Variable screw assemblies that meet all needs

SL Screw

- Screw designed based on the results is used as the core of this new dosing system.
- Pellet clogging (A), overshoot due to shear heat (B), pressure variation before the chip (C), abnormal pressure near the hopper (D), and melting pressure lower than the back pressure (E) are observed in the conventional screw. The SL Screw clears all of these problems and enables stable and normal melting processes.

Comparison of analyses of conventional screw (left) and SL Screw (right)

- Screw tip and barrel wearing
- Screw molding control time
- Screw maintenance
- Screw position
- Screw control before and after V-P switch
- Low-pressure, smooth, and complete filling

Comparison of filling

- Increased cosmetic defects and melt deformation
- Increased cosmetic defects and mold deformation
- Increased barrel maintenance
- Stable molding is enabled for some products
- Low-pressure and smooth filling
- Stable molding control time
- Screw positioning
- Holding pressure detector
- Holding pressure lowered gradually
- Controls the screw position
- Screw control before and after V-P switch
- Low-pressure, smooth, and complete filling

Comparison of operability

- Overall evaluation of operation difficulties
- Error-free and simple setting
- Reduces operation time
- Production engineers and general operators can make full use of the advanced performance.

Dosing system based on a new theory that overturns the accepted ideas of screws

- Pellet clogging (A), overshoot due to shear heat (B), pressure variation before the chip (C), abnormal pressure near the hopper (D), and melting pressure lower than the back pressure (E) are observed in the conventional screw. The SL Screw clears all of these problems and enables stable and normal melting processes.

Variable screw assemblies that meet all needs

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Nitride</th>
<th>Plating</th>
<th>Wear resistant</th>
<th>Wear resistant</th>
<th>Corrosion resistant</th>
<th>Corrosion resistant</th>
<th>High temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
<td>Screw</td>
</tr>
<tr>
<td>Screw type</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
<td>Nitride</td>
</tr>
<tr>
<td>Screw tip</td>
<td>Rotation type</td>
</tr>
<tr>
<td>Screw molding</td>
<td>Normal molding</td>
<td>FFC molding</td>
<td>Normal molding</td>
<td>Normal molding</td>
<td>Normal molding</td>
<td>Normal molding</td>
<td>Normal molding</td>
</tr>
<tr>
<td>Type</td>
<td>SD Screw</td>
<td>SM Screw</td>
<td>SD Screw</td>
<td>SM Screw</td>
<td>SD Screw</td>
<td>SM Screw</td>
<td>SD Screw</td>
</tr>
<tr>
<td>Features</td>
<td>Wear resistance</td>
<td>Corrosion resistance</td>
<td>Wear resistance</td>
<td>Corrosion resistance</td>
<td>Wear resistance</td>
<td>Corrosion resistance</td>
<td>Wear resistance</td>
</tr>
<tr>
<td>Resin that is not</td>
<td>Wear resistance</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
<td>Wear resistant</td>
</tr>
<tr>
<td>Resin that is not</td>
<td>10 - 30%</td>
</tr>
<tr>
<td>Reduced operation time</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
</tbody>
</table>
Zero-molding main screen: Simple process setting

1. Actual values display function
2. Graphing function
3. Auxiliary facility monitor (10 points)
4. Facility monitor (up to 20 points)
5. Meter display function (up to 10 points)
6. Filling pressure (in the C-DI setting)
7. Filling timeout setting (0.01 - 99.99 sec.
8. Filling delay time
9. Auto purging with oil injection: confirmation (Nozzle touch or Oil return end)
10. Cylinder temperature control (Within ±2°C)
11. Cylinder pressure display setting (Setting: FOREVER/Permanent)
12. Self-diagnostic function
13. 4-20mA output: MONITOR
14. 4-20mA output: MONITOR
15. 4-20mA output: MONITOR
16. 4-20mA output: MONITOR
17. 4-20mA output: MONITOR
18. 4-20mA output: MONITOR
19. 4-20mA output: MONITOR
20. 4-20mA output: MONITOR

Screen for confirm spec. and functions (Standard, option, abnormal transaction, specification list, monitoring system)

21. Minimum clamp force detect (Automatic)
22. Holding pressure time 0.01 sec setting
23. V-P switchover controller (Pressure, position) Filling delay timer
24. Wave: Display by process (Injection, holding press., plasticizing., mold open, mold close, ejector)
25. Wave: Wave preservation message
26. Quality Control: Wave distinction
27. Automatic setting for abnormality monitoring condition
28. Abnormality history display (Abnormal item, occurrence time display)
29. Auto start/stop function (Lowered temp, heater on, machine shut down)
30. Control and monitor unit

Control unit

1. LCD monitor (4.3"")
2. LCD monitor (4.3"")
3. LCD monitor (4.3"")
4. LCD monitor (4.3"")
5. LCD monitor (4.3"")
6. LCD monitor (4.3"")
7. LCD monitor (4.3"")
8. LCD monitor (4.3"")
9. LCD monitor (4.3"")
10. LCD monitor (4.3"")
11. LCD monitor (4.3"")
12. LCD monitor (4.3"")
13. LCD monitor (4.3"")
14. LCD monitor (4.3"")
15. LCD monitor (4.3"")
16. LCD monitor (4.3"")
17. LCD monitor (4.3"")
18. LCD monitor (4.3"")
19. LCD monitor (4.3"")
20. LCD monitor (4.3"")
21. LCD monitor (4.3"")
22. LCD monitor (4.3"")
23. LCD monitor (4.3"")
24. LCD monitor (4.3"")
25. LCD monitor (4.3"")
26. LCD monitor (4.3"")
27. LCD monitor (4.3"")
28. LCD monitor (4.3"")
29. LCD monitor (4.3"")
30. LCD monitor (4.3"")

Optional equipment

1. Single cavity mold for trials and small lot production (Material: PE, PP, PS, ABS, PC, ASA, PMMA, SMC)
Main Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>SE50EV-A</th>
<th>SE75EV-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamp unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamp system</td>
<td></td>
<td>Double toggle (5 points)</td>
<td>Double toggle (5 points)</td>
</tr>
<tr>
<td>Clamp force</td>
<td>kN</td>
<td>1800</td>
<td>750</td>
</tr>
<tr>
<td>Clearance between tie-bars (WxH)</td>
<td>mm</td>
<td>360 x 360</td>
<td>420 x 420</td>
</tr>
<tr>
<td>Platen size (WxH)</td>
<td>mm</td>
<td>500 x 500</td>
<td>580 x 580</td>
</tr>
<tr>
<td>Daylight</td>
<td></td>
<td>600</td>
<td>710</td>
</tr>
<tr>
<td>(When mold thickness extension 100 mm is selected)</td>
<td>mm/50</td>
<td>650</td>
<td>760</td>
</tr>
<tr>
<td>(When mold thickness extension 100 mm is selected)</td>
<td>mm/100</td>
<td>760</td>
<td>---</td>
</tr>
<tr>
<td>Mold opening stroke</td>
<td>mm</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Platen speed</td>
<td>mm/s</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Mold thickness (min. – max.)</td>
<td>mm</td>
<td>160 – 350</td>
<td>160 – 410</td>
</tr>
<tr>
<td>(When mold thickness extension 100 mm is selected)</td>
<td>mm/50</td>
<td>160 – 460</td>
<td>160 – 460</td>
</tr>
<tr>
<td>Locating ring diameter</td>
<td>mm</td>
<td>ø100</td>
<td>ø100</td>
</tr>
<tr>
<td>(When the option is selected)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ejecting points</td>
<td></td>
<td>Motor driven type (5 points)</td>
<td>Motor driven type (5 points)</td>
</tr>
<tr>
<td>(When ejector compression devices is selected)</td>
<td></td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>(When ejector force power up is selected)</td>
<td></td>
<td>(49)</td>
<td>(49)</td>
</tr>
<tr>
<td>Ejector speed</td>
<td>mm/s</td>
<td>333</td>
<td>333</td>
</tr>
<tr>
<td>(When ejector compression devices is selected)</td>
<td></td>
<td>(250)</td>
<td>(250)</td>
</tr>
<tr>
<td>Ejector stroke</td>
<td>mm</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>(When ejector stroke extension is selected)</td>
<td></td>
<td>(100)</td>
<td>(100)</td>
</tr>
<tr>
<td>(When ejector compression devices is selected)</td>
<td></td>
<td>(60)</td>
<td>(60)</td>
</tr>
</tbody>
</table>

Screw diameter	mm	18	20	22	25	28	25	28	32	25	28	32	32	36			
Injection pressure max.	MPa 1/2	274	265	220	170	274	214	224	187	274	214	274	214	317	274	214	274
Holding pressure max.	MPa 1/2	274	265	220	170	274	214	224	187	274	214	274	214	317	274	214	274
Theoretical injection capacity	cm³	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95
Injection mass (Gbps)	g	19	24	28	32	37	41	46	50	56	60	65	70	75	80	85	90
Plasticizing rate 1/4, 1/5	kg/h	10	13	18	23	26	30	35	40	45	50	55	60	65	70	75	80
Injection rate	cm³/s	140	173	207	240	285	320	365	400	435	470	505	540	575	610	645	680
Screw stroke	mm	78	104	104	104	104	104	104	104	104	104	104	104	104	104	104	104
Injection speed max.	mm/s	550	500	400	500	400	500	350	350	350	350	350	350	350	350	350	350
(When high load filling spec. is selected)	(350)	(250)															
Screw rotating speed max.	mm/r	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400
Number of temperature control zone		4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Heater capacity	kW	3.8	4.2	4.8	5.4	6.5	7.8	9.4	10.8	12.2	13.6	15.0	16.4	17.8	19.2	20.6	22.0
Nozzle contact force	kN	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
Injection moving stroke	mm	250	250	250	300	300	300	300	300	300	300	300	300	300	300	300	300
Provocation		30	30	30	45	45	45	45	45	45	45	45	45	45	45	45	45
Hopper capacity	(When the standard hopper is selected)	L	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)					

Machine dimensions and mass			
Machine dimensions (LxWxH) 1/3	mm	3620 x 1082 x 1575	4195 x 1152 x 1575
(When mold thickness extension 100 mm is selected)	mm	3670 x 1082 x 1575	(4245 x 1152 x 1575)
Machine mass		1000	1200

1/1 The max. injection pressure and max. hold pressure are calculated values and represent machine output, not resin pressure.

2/1 The max. injection pressure and max. hold pressure are calculated values and represent machine output, not resin pressure. H2O.

3/1 The plasticizing rate is a pointer for a machine equipped with the SD Sone.

4/1 3.0% of the value in the table is the threshold value when this 1/3 is selected.

5/1 The total length of the machine is to the front end of the injection unit when measuring the screw of the smallest diameter. The total height of the machine does not include the dimensions of budding pads and hopper. Specifications are subject to change without notice for performance improvement.

Additional Information

- Machine dimensions (LxWxH) with mold thickness extension 100 mm selected:
 - SE50EV-A: 3620 x 1082 x 1575
 - SE75EV-A: 4195 x 1152 x 1575

- Machine mass:
 - SE50EV-A: 1000 kg
 - SE75EV-A: 1200 kg

- The total height of the machine does not include the dimensions of budding pads and hopper. Specifications are subject to change without notice for performance improvement.